Распределение Коши

Распределение Коши
Плотность вероятности

Зелёная кривая соответствует стандартному распределению Коши
Функция распределения

Цвета находятся в соответствии с графиком выше
Параметры x_0\! - коэффициент сдвига
\gamma > 0\! - коэффициент масштаба
Носитель x \in (-\infty; +\infty)\!
Плотность вероятности \frac{1}{\pi\gamma\,\left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]} \!
Функция распределения \frac{1}{\pi} \mathrm{arctg}\left(\frac{x-x_0}{\gamma}\right)+\frac{1}{2}
Математическое ожидание (не определено)
Медиана x0
Мода x0
Дисперсия (не определена)
Коэффициент асимметрии (не определён)
Коэффициент эксцесса (не определён)
Информационная энтропия \ln(4\,\pi\,\gamma)\!
Производящая функция моментов (не определена)
Характеристическая функция \exp(x_0\,i\,t-\gamma\,|t|)\!

Распределе́ние Коши́ в теории вероятностей (также называемое в физике распределе́нием Ло́ренца) — класс абсолютно непрерывных распределений. Случайная величина, имеющая распределение Коши, является стандартным примером величины, не имеющей математического ожидания и дисперсии.

Содержание

Определение

Пусть распределение случайной величины X задаётся плотностью fX(x), имеющей вид:

f_X(x) = \frac{1}{\pi\gamma \left[1 + \left(\frac{x-x_0}{\gamma}\right)^2\right]} = { 1 \over \pi } \left[ { \gamma \over (x - x_0)^2 + \gamma^2 } \right],

где

  • x_0 \in \mathbb{R} — параметр сдвига;
  • γ > 0 — параметр масштаба.

Тогда говорят, что X имеет распределение Коши и пишут X˜C(x0,γ). Если x0 = 0 и γ = 1, то такое распределение называется станда́ртным распределением Коши.

Функция распределения

Функция распределения распределения Коши имеет вид:

F_X(x) = \frac{1}{\pi} \mathrm{arctg}\left(\frac{x-x_0}{\gamma}\right)+\frac{1}{2}.

Она строго возрастает и имеет обратную функцию:

F^{-1}_X(x) = x_0 + \gamma\,\mathrm{tg}\left[\pi\,\left(x-{1 \over 2}\right)\right].

Это позволяет генерировать выборку из распределения Коши с помощью метода обратного преобразования.

Моменты

Так как интеграл Лебега

\int\limits_{-\infty}^{\infty} x^{\alpha}\, f_X(x)\, dx

не определён для \alpha \ge 1, ни математическое ожидание, ни дисперсия, ни моменты старших порядков этого распределения не определены. Иногда говорят, что математическое ожидание не определено, а дисперсия бесконечна.

Другие свойства

\bar{X} = \frac{1}{n} \sum\limits_{i=1}^n X_i \sim \mathrm{C}(0,1).

Связь с другими распределениями

  • Если U \sim U[0,1], то
x_0 + \gamma\,\mathrm{tg}\left[\pi\,\left(U-{1 \over 2}\right)\right] \sim \mathrm{C}(x_0,\gamma).
\frac{X_1}{X_2} \sim \mathrm{C}(0,1).
\mathrm{C}(0,1) \equiv \mathrm{t}(1).
Вероятностные распределения
Одномерные Многомерные
Дискретные: Бернулли | биномиальное | геометрическое | гипергеометрическое | логарифмическое | отрицательное биномиальное | Пуассона | равномерное мультиномиальное
Абсолютно непрерывные: Бета | Вейбулла | Гамма | Колмогорова | Коши | логнормальное | Лоренца | нормальное | равномерное | Парето | Стьюдента | Фишера | хи-квадрат | экспоненциальное | Эрланга многомерное нормальное
 
Начальная страница  » 
А Б В Г Д Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ы Э Ю Я
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 Home